

Seismicity Pattern of Pakistan and Surrounding Areas

Pakistan Meteorological Department

National Seismic Monitoring Network, Islamabad

Dated: 5th January2016

8th October, 2005 Kashmir Earthquake Mw 7.6 and Aftershocks Distribution

26th October, 2015 Hindukush Region Earthquake Mw 8.1 and Aftershocks Distribution

Last Five Years Frequency of Earthquake in and around Pakistan

Years

General Seismicity Pattern of Pakistan & Surrounding Areas

Historical Earthquakes of Pakistan

Seismicity Pattern in Hindukush Region

Depth Profile of Hindukush Region

Part – 2 General Seismicity Pattern of Pakistan

Seismicity Trend Analysis over Active Faults in Hazara-Kashmir Syntaxis

Active Faults and Source Mechanism of Earthquakes (1970 - 2015, M > 5.5)

Seismicity and Active Faults Near Islamabad

Future Large Earthquake Probability

'a' and 'b' value comparison on yearly basis between 2001 – 2015

Conclusion – 1

The Hazara/Kashmir Syntaxis

- Over all there is an increasing trend in Hazara-Kashmir Syntaxis area since last five years.
- Frequency of intermediate rang events increased,

Seismicity in Main Mantle Thrust and Nanga Parbat, Haramosh area

The Tectonic Map of the Area

Seismicity of the Region

Magnitude Classes

Only one earthquake occurred on 2002 with Magnitude range 5.1-6.0

Years

Conclusion – 2

The Main Mantle Thrust and Nanga Parbat Haramosh Syntaxes

This area has potential of intermediate range seismic activities (3.1-4.0).

Seismicity Trend in the Region of Salt Range

MAIN FAULTS IN THE REGION

Kalabagh Fault

(North South)

Jhelum Fault

(North South)

Salt range thrust fault

(East-West)

Seismicity of Salt Range

Salt Range Events Frequency

EARTHQUAKE FREQUENCY TREND WITH RESPECT TO MAGNITUDE FOR THE PERIOD 1975-2015

Conclusion – 3

The Region of Salt Range

- 1. Over all Earthquake occurrence frequency trend is same.
- 2. Area representing the moderate seismicity

Way forward

- I. The risk of earthquakes has significantly increased due to the urbanization. A big earthquake hitting a densely populated city could have devastating impacts. Besides existing earthquake monitoring network, a dense network will be required particularly for **Northwest, northeast and southwest areas** of Pakistan.
- II. Earthquake Early warning system is recommended for **Northwest, northeast and southwest areas.**
- III. Increase the local capacity of earthquake prone areas for disaster resilience with series of training workshops for regarding **MEASURES TO MINIMIZE THE EFFECTS OF AN EARTHQUAKE**.
- IV. For disaster Reduction planning is the best way for a more community to move toward Disaster Resilience.

Thanks

Local and International Broadband Stations Network

Magnitude and Intensity

MAGNITUDE

- Measure of earthquake size (energy)
- Quantitative measure
- Source Parameter
- Remains same everywhere

INTENSITY

- Measure of the destruction caused by an earthquake
- Qualitative measure
- Site parameter
- Different at different places (Attenuation and amplification phenomena)
- Most commonly used intensity scale is "MMI or Modified Mercalli Intensity Scale.

Magnitude and Intensity

- DIFFERENCE BETWEEN MAGNITUDE & INTENSITY
 - Magnitude remains unchanged with distance from the earthquake.
 Intensity decreases with distance from the earthquake epicenter.

 Magnitude measurement requires instrumental monitoring for its calculation, however, assigning an intensity requires a sample of the felt responses of the population.

Different Magnitude Scales

Earthquake Magnitude

Richter Local Magnitude

Surface Wave Magnitude

$$M_s = \log A + 1.66 \log \Delta + 2.0$$

Body Wave Magnitude

$$m_b = \log A - \log T + 0.01 \Delta + 5.9$$

Other Instrumental Magnitude Scales

$$M_C$$
, M_D , M_{JMA}

Moment Magnitude (preferred)

$$M_{\rm W} = (\log M_{\rm o})/1.5 - 10.7$$